
Optimisation with one variable 
 
We are frequently interested in maximising or minimising a quantity, e.g. 
maximising profits or utility, or minimising costs. This can be done using 
differentiation. 
 
A function is at its maximum or minimum value when it stops rising and 
starts falling, or vice versa. . 
 
When a function moves from rising to falling (or v.v.), there will be a 
momentary stationary point where it is not changing. 
 
That is, at a local maximum or local minimum of a function, the 
differential, F’(X), will be equal to 0 (i.e. the tangent line is flat):  
 

 
We say a local maximum or minimum, because it may not be the global 
highest or lowest point. 
 
Stationary points can also be points of inflexion, where the function flattens 
out then continues in the same direction. . 
 
Example 
 
Suppose a firm faces a demand curve given by: 
 
Q = 20 – 3P 
 



Where Q is quantity and P is price. How can the firm maximise revenue? 
 
Well, revenue is price*quantity, PQ, which is equal to 
 
P(20-3P) = 20P – 3P2. . 
 
So, let F(P) = 20P – 3P2 
 
Then F’(P) = 20 – 6P. 
 
A stationary point will come when F’(P) = 0, i.e. when 
 
20 – 6P =0 
 
Therefore, 20 = 6P, so 
 
P = 20/6 = 3.333 
 
At this value, Q = 20 –3P = 10, so revenue = 10*3.333 = 33 and a third. 
 
Classifying stationary points 
 
How can we be sure (apart from the graph) that this is a maximum and not a 
minimum or a point of inflexion? We do this by looking at the second 
differential – that is, the differential of the differential – which we write 
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E.g. if F(X) = X3 , then F’(X) = 3X2 , so F’’(X) = 3*2X = 6X. 
 
This is the rate of change of the rate of change. 
 
Now at a maximum, the rate of change starts positive, goes to zero, then 
goes negative – so the rate of change is going down, so the rate of change of 
the rate of change is negative. In other words 
 
If F’’(X)<0 at a stationary point, then the point is a local maximum. 
 
The opposite holds at a minimum, so 
 



If F’’(X) >0 at a stationary point, the point is a local minimum. 
 
Now in the case of our company, where the revenue function was F(P) = 
20P – 3P2, and F’(P) = 20 – 6P, with a stationary point at P=3.333. 
 
Now F’’(P) = -6. This is negative at the stationary point (indeed at all values 
of P), and so the point is a local maximum. 
 
If F’’(X) = 0 at a stationary point, the point could be a maximum, 
minimum or point of inflexion.  
 
Specifically: look at successive differentials (F’’’(X), F(4)(X), etc.) 
 

• If the first non-zero differential at the stationary point is of odd order 
(e.g. 3rd, 5th differential), then the stationary point is a point of 
inflexion. 

• If the first non-zero differential at the stationary point is of even order 
and negative, then the stationary point is a local maximum. 

• If the first non-zero differential at the stationary point is of even order 
and positive, then the stationary point is a local minimum. 

 
Note that conditions for a minimum (whether in functions of one or more 
variables) will always be a mirror image of the conditions for a maximum. 
This can easily be seen, since: 
 
Minimising the function F(X) is the same as Maximising the function –
F(X). 
 
The same holds true for functions of more than one variable. 
 
Distinguishing a global maximum or minimum 
 
In general, the global maximum or minimum can occur at any of the local 
maxima and minima, or at a corner solution – the lowest or highest possible 
value. (For example, a company’s profits may be highest when output is 
zero.) . It may be necessary to look at all maxima/minima and all possible 
corner solutions to find the best. 
 
However, there are certain cases where we can be sure a local 
maximum/minimum is the global maximum/minimum: 



 
If F’’(X) < 0 for the full range of values a function can take, then any 
local maximum is the global maximum. (We say such a function is 
concave). 
 
 If F’’(X) > 0 for the full range of values a function can take, then any 
local minimum is the global minimum. (We say such a function is 
convex). 
 
In the case we considered, we found F’’(P) = -6, which is <0 for all possible 
values (0 to infinity), so the local maximum we found must be a global 
maximum. 
 
Non-negativity constraints 
 
In actual economic problems, we will frequently require that our variables 
should not take negative values. For example, it would not be of much use to 
a company to work out that its optimum number of workers is negative. 
 
Suppose therefore that we are maximising the function F(X) subject to the 
condition X≥0.  
 
The (global) maximum value of F(X) either where δF/δX=0 and δ2F/δX2<0, 
or where X=0 and δF/δX≤0. Similarily, the minimum value must occur 
either where δF/δX=0 and δ2F/δX2>0, or where X=0 and δF/δX≥0. We can 
see the reasons for this on the graph below: 
 



 
 
A maximum at X=0 is known as a boundary solution, one where X>0 is an 
interior solution. 
 
The concavity/convexity condition that guarantees that a local 
maximum/minimum will be a global maximum/minimum remains, for either 
type of local optimum. 
 
Example: Marginal costs and marginal revenue 
 
We know that a company maximises profits when marginal costs = marginal 
revenue. (MC=MR). This can be analysed in terms of calculus. 
 
Suppose a company has a Revenue function R(Q), where Q is the output, 
and a cost function C(Q). Then the profit function, Π(Q), can be written 
Π(Q) = R(Q) – C(Q). 
 
Differentiating, Π’(Q) = R’(Q) – C’(Q). This will have a stationary point 
where Π’(Q)  = 0, so R’(Q) – C’(Q) = 0, and hence: 
 
R’(Q) = C’(Q). 
 

F(X) 

X 

Local maximum: 
δF/δX=0 

Local maximum: 
X=0, δF/δX<0 



But R’(Q) is the rate of change of revenue as output increases, in other 
words, the marginal revenue. C’(Q) is the rate of change of costs, in other 
words, the marginal cost. Hence, the equation we have tells us that MC=MR. 
 


